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PREFACE 

This  report was prepared by the Space Power and Propulsion Section of the 

General Electr ic  Company i n  Evendale, Ohio under NASA Contract NAS 5-913, "The 

Development of Resistance Jet Thruster Systems". 

the direct ion of the Goddard Space Flight Center with Mr. James Bridger as 

Project Engineer. 

!he work i s  administered under 

Somc of the analyses presented herein have previously been presented i n  the 

references, whereas some are being reported f o r  the first time. 

i s  the e f fo r t  of the following contributors: R. Richter, M. L. Bramberg, R. E. 

Viventi, H. Brown and L. L. Cumbers. 

Most of t h i s  work 

This report is simultaneously being published as General Electric Report 
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1 ABSTRACT 29347 
Analytical methods are presented for designing a resistance 

jet thruster to be used for station-keeping and attitude control 

functions of a space vehicle. 

thermodynamic design, optimization of the expansion nozzle, length 

of flow passage, size and life of the heater filament, and radiation 

heat shielding. The transient performance of the thruster is then 

calculated, and appropriate modifications can be made if desired, 

to change the time constant and minimum impulse bit of the thruster.. 

Effects on the vehicle are analyzed; and a procedure is given for 

designing the thruster so as to minimize the overall weight penalty 

on the vehicle. 

The steps considered include the 
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2 Area, i n  

Area of sonic inlet orif ice ,  3.n 

Area of sonic engine throat, i n  
2 Exit area, i n  

Specific heat of gas, B/lb.OR 

sonic velocity a t  s tagnat ion  temperature, f t / sec  

Specific heat, B/lb . OR 
Specific heat of thruster ,  B/lboR 

Effective emissity, dimensionless 

Steady-state thrust ,  lb. 

Acceleration of gravity, 32.2 ft/sec 

Heat transfer coefficient,  ~ / p t . ~  &.OR 

2 

2 

2 

Impulse, 

Current, 

Specific 

Constant 

Constant 

lb-sec 

amps 

impulse, sec 

defined by equation (42) 

given in equation (38) 

Thermal conductivity, B/hr.ft.'R; Ratio of specif ic  heato 

length of flow passage o r  length of heater w i r e ,  in. 

Number of thrusters; N u m b e r  of revolutions 

Number of layers of heat shielding 

Elec t r ica l  power, watts; Pressure, ps ia  

Exit pressure, ps ia  

'Ibtal heat transferred t o  the propellant, watts 

Heat transferred,  watts 

Resistance of heat wire, O h S j  Gas constant, f t f R  
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Ncmenclature, 1. Cont'd 

Y ? w  m i u s  3f Ifov aruliis, i n .  

Radius, i n  

Temperature, OR 

Time, sec 

!Pime inlet valve is open, sec. 

Propellant velocity, in j sec ;  Volume, rt 3 ; Voltage, vo l t s  

character is t ic  velocity, f t /sec 

Mass flow ra te ,  lb/sec 

Weight of vehicle without propellant, l b  

Weight of gas i n  chamber, lb .  

Tota l  weight of vehicle, l b .  

Weight of propellent, lb. 

Total weight of resistance jet system, lb. 

Mass of thruster,  lb. 

Ratio of power supply weight t o  power, lb/watt 

Ratio of tankage t o  propellant weight 

Ratio of sonic flow areas, %*/%* 
%hemal diffusivi ty ,  i n  /sec 

Width of flow passage, in. 

Bnisaivity, dimensionless 

Time a t  which flow is stopped, sec 

Viscosity, lb/f t . sec 

Ratio of chamber gas temperature t o  supply temperature, Tc/To 

2 

Propellant density, l b / f t  3 

Stefan-Boltzman constant, 5.668 x 10 -12 'm watts ; Constant defined by 

equation (28) 

Time constant, sec 

c m R  
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I 
I o  INTRODUCrnON 

This report is a compilation of analyses which are useful i n  the design of 

resis tance jet  thrusters.  

design parameters f o r  actual engines, and examples of applying the analyses are 

included throughout. 

These analyses have previously been used i n  determining 

The design procedure given i n  t h i s  report involves first specifying a th rus t  

l eve l  and then proceding step-by-step t o  a complete thrus te r  design. 

practice,  these s teps  are not, i n  fact, done consecutively but often concurrently. 

A t  many times during the design of a resistance jet, prac t ica l  considerations w i l l  

I n  actual 

necessitate change6 and compromises not accounted f o r  i n  this procedure. 

t h i s  report provides the necessary analyses f o r  taking into account the important 

However, 

parameters i n  resistance je t  design. 

The thermodynamic design of the thruster itself’ is the first consideration, 

and the expansion nozzle i s  designed t o  minimize the boundary layer losses.  

the physical design of the thrus te r  body is obtained by finding the required length 

of flow passage and the amount of heater wire needed. Since the engine lifetime is 

noxmally dependent on the heater life, the prediction of operating l i f e  can then 

be made. 

t o  maintain radiation losses below a epecified amount. 

Then 

Finally, a calculation is made of the amount of heat shielding required 

A resistance j e t  used for  s ta t ion-heping and a t t i t ude  control of a space 

vehicle is usually expected t o  operate repeatedly with short  pulses of t h r u s t .  

Therefore it is necessary t o  know about the t ransient  performance of the thruster .  

-1- 



Howevel-, the design procedure so far has been based completely on the steady-state 

performance goals. 

of the design parameters t o  make sure they are  compatible with the par t icular  

th rus te r  application. 

Accordingly, it is essential to determine the t m n e i e f i t  ef fec ts  

f inally,  it is important t o  consider the e f f ec t  of the thrus te r  on the  vehicle. 

'I2xl.s can be done a t  the beginning of the design or, i n  the case when the performance 

goals are previously specified, a t  the conclusion of the design. I n  any case, it is 

advisable t o  compare the thrus te r  design with the optimum design based on vehicle 

specifications. This can be done w i t h  the optimization analysis given i n  this report. 

In the Appendix is given the output of the nozzle optimization program f o r  a 

par t icular  design example. 

of these analyses i n  greater detail.  

A l i s t  of references i s  included which contain several 

-2 - 



. 
11. DESIGN PROClilXJRE FOR A RESIST&VCE JET THRUSTER 

i 

The resistance jet is  an engine which can be used f o r  a var ie ty  of applications. 

1 1- In this report, the par t icu lar  application is t o  provide s m a l l  amounts of thruet  

at  varying in te rva ls  f o r  station-keeping and a t t i t ude  control of a satellite. For 

such an application, w e  can specify the th rus t  l eve l  required f o r  the  engine. Let  

us assume a thrust of 0.05 lb, which is a representative th rus t  level f o r  combined 

station-keeping and a t t i t ude  control functions. 

1 
A. Thermodynamic Design 

The selection of propellant depends mostly upon the spec i f ic  impulse desired; I 
f o r  t h i s  example w e  w i l l  consider hydrogen as the propellant. 

I 
Next, we shall assume an operating temperature and pressure f o r  the propellant, 

I I. based upon the materials used i n  the thruster. For t h i s  example, we can consider 

that  the c r i t i c a l  parts of the engine w i l l  be made of high temperature steel alloys, 

with boron n i t r ide  as an insulator. 

which w i l l  s t i l l  give a reasonable level  of specif ic  impulse, can be taken at  2700°R. 

The chamber pressure w i l l  be assumed t o  be 5 atmospheres. 

A safe operating temperature f o r  these materials, 
I 
I 

Now we need thermodynamic tables for  hydrogen. These have been generated by a 

computer program and, f o r  hydrogen a t  5 atmospheres and 27W0R, the idea l  specif ic  

impulse i s  l i s t e d  i n  Table 1 as a function of the idea l  nozzle area ra t io .  

an area r a t i o  of 100:1, the following values can be read: 

If w e  take 1 

-3- 
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I 
i 

Specific impulse = 658 sec. 

Flow/throat area = 0.196 lb/[sec-in 1 
Thrust/throat area = 129 lb/in2 

Power/thrust = 13.3 Kw/lb 

2 

1 

Therefore w e  can calculate, 

2 = 0.000388 i n  0.05 l b  

129 lb/in2 
lhroat area = 

2 E x i t  area = 0.0368 i n  

Ekit diameter = 0.222 i n  

Power = 13.3 

Flow ra te  = 

(0.05 lb) = 665 watts 

0*196 Ib x 0.000388 in2 = 7.6 x 10 -5 g 2 
sec - in 

This procedure can therefore be used t o  establish the thermodynamic design of 

a resistance jet  thruster, not considering the radiation and boundary layer losses. 

B. Optimization of Nozzle Desim 

If the boundary layer losses are taken in to  consideration, the nozzle area 

r a t i o  can be chosen so as t o  optimize the overall performance. 

losses are usually small and relatively constant so they have only a slight ef fec t  

on the optimization. 

calculates the s ize  of the boundary layer for d i f fe ren t  nozzle angles and lengths, 

The radiation 

The boundary l a y e r  losses are found by a computer program which 

-5- 



and f inds  the heat transfer and f luid f r ic t ion  losses f o r  each case. 

has k e n  applied t o  the dssieir, cf the  exmiple engiae i n  t h i s  report. 

shown i n  Appendix A which indicates that the optimum nozzle angle i s  25' and that t h e  

thrust  w i l l  decrease f o r  an effective area r a t i o  greater than 15.3. 

area r a t i o  is the actual area ratio corrected fo r  the boundary layer displacement 

thickness). 

This prograa 

Pie output is 

(The effective 

The results of t h i s  program show tha t  an optimum nozzle design leads t o  the 

following parametric values: 

Specific impulse = 596 sec. 

Flow/throat area = 0.196 lb/(sec - i n  ) 

Flow rate = 7.6 x 

Throat diameter = 0.0222 inch 

Nozzle angle = 25' 

Actual area r a t i o  = 38.2:1 

Exit diameter = 0.137 in.  

Actual thrust  = 0.0453 lb. 

Power = 665 watts 

2 

lb/sec. 

This optimization program ha6 therefore determined the  optimum design f o r  

the nozzle without affecting the thermodynamic design. 

boundary layer losses i n  the nozzle and the result ing values of effective specific 

impulse and t h r u s t .  

It also indicates the 

-6- 



To determine the length of path needed f o r  t h e  propellant, we rei'er Lo cn 

analysis of' t he  radiation and convection heating of a gas i n  an annulus  w i L h  heated 

core (Reference I). 

exponentially approach the temperature of the hot w a l l .  

i s  given by: 

It shows that  the temperature of the gas in the annulus will 

The t o t a l  heat trmsferred 

As t, the residence time, approaches i n f i n i t y ,  t h j n  becomes: 

J 1 1 
25 + + ...... 

Therefore, i f  we choose a value of the exponent t h a t  makes the  first expotential 

term have the value 0.01, this will give a to ta l  heat transfer which is within one 

y r c e n t  of the maximum heat transfer obl;ainabl.e. So we take 

where t = time i n  the annulus, sec 

3 = width of flow passage, in 

(thermal d i f fus iv i ty )  -1 ,- .cp 

-7 - 
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Now the residence t i m e  is given by t h e  length of passage divided by the velocity, 

j"Rm6 ) t = F  L = L g  = L p  
W ia 

Therefore the exponent of equation (2) becomes 

m d  we c m  take the  logmiti-rn of both sldes of equation (2)  

2 @ k L R ,  I n  0.01 = - 4.605 = - 0 -  

( 4 )  

( 5 )  

Assming 

b =  

Rm= 

T =  

k -  

cP= 
0 

W =  

typical  values 

w b c p  

as follows, we can calculate the flow length: 

0.020 i n  

270O0R 

0.25 i n  
0.25 '/hr ft. - 0 R a t  2OOOoR 

0.35 '/lb-'R a t  2 W 0 R  

7.6 x log5 lb/sec 

Therefore, a design of the assumed diameter and thickness which has a flow path 

longer than 0.027 inches is sufficient t o  achieve a propellant temperature which is 

-8- 



report  has E ,'low path of 1.5 inches to provide 

and therefore the propellant w i l l  be a t  w a l l  temperature throughout almost the I- 
!iie design exmple given i n  t h i s  

suff ic ient  room f o r  the heater wire, 

en t i re  i'low pessrig2. 1- 
D. fieater Wire Size and Lifetime - --___. ---I-.-..-- 

'me preceding chapters have discussed the thermodynamic arid thermal design of 

thz resistance jet  engine. 

necessary to know the s i ze  and length of wire t o  D e  used for the heater. 

of the w i r e  can also be predicted and this will then determine the engine lifetime. 

I n  order to complete the mechanical design it is 

The l i l e  

The design procedure of the heater wire is as follows: 

I 
I. 
I 

From the  thermodynamic design, we know the power input of the  engine. 

Power = 665 watts. 

We also know the temperature of the gas. 

Temperature = 27W0R. 

and there  i s  a temperature drop through the boron n i t r i d e  and s ta in less  steel su r -  

rounding the wire. Therefore, w e  can calculate the heater wire temperature f o r  a 

Lypical engine design (see 

I 
R 
I 
I 
1. 
1' 
I 

Density of propellant 

Flow path: .020 inch 

Fig. 1). 

lb ( a t  average temperature 1600'~) = 8.8 - 
annulus around a 1/2" diameter heater core. 

f t 3  
- 

2 Flow area: f - (.5)2( = 0.033 i n  

Flow rate: 
- 

7.6 x loo5 lb/sec 

-9- 
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7.6 10-5 14.4 - 37.7 f t .  Velocity of propellant: = - 
8.8 x x 0.033 sec 

Viscosity of propellant: (at 1600OR) = 1.2 x lb/(sec-ft)  
8.8 x loo3 x 37.7 x 1/16 = 144 Reynolds number =p = P 1.2 10-5 12 

a?is i s  therefore a case of laminar flow heat transfer to  a gas in  an annulus. 

From Jacob (Reference 2 )  the heat transfer coefficient for this  case is: 

ft. 2k 2(0.2 B 
6 hrft2 OR 

h = -  I 

B h = 240 
hr.ft2 OR 

For heat transfer through a composite cylinder to  a gas (see Fig. 1) the temperature 

drop is given by: 

1 

2fr h 

r r  
+ In 2/ 1 + 1nr3/'2 

2nk12 2 n % 3  3 34 ,  
- t4 - L 
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I 
I 

lherefore, the heater w i r e  must be at a temperature of M O R ,  o r  about lgOO°K. 

mrn ZSg. 2 tine resistivity of tungsten-rhenium w i r e  is 75 .*j'l.-cm a t  C i s  temp- 

erature. 
r 

"hen the power output of the w i r e  is given by: 

We can choose a convenient s ize  and length fo r  the w i r e ,  f o r  instance 

meter and 100 cm. long, and f ind  the corresponding current and voltage required. 

10 m i l  dia- 

2 
= 44.9 I 2 = -  P f 665 ~ 'T& . ( .01)~ (2.54) (e) 75 x 10- 100 

I = 6.7 amps 

v = %= 99.2 volts 

U s i n g  Table I1 we can find the l ife of the heater (time t o  evaporate 10s of the w i r e )  

5 0 4 Life = 1630 x 1.45 x 10 hr = 2.36 x 10 hr. o r  2.7 x 10 years 

I 
I 
1, 
1. 
1 

l b i s  is actually the l i f e  of a pure tungsten heater filament, but it demonstrates 

that the actual w i r e  used would be able t o  last  considerably longer than the 

duration of the mission. It should also be noted that this lifetime calculation 

is based on full-power requirements. 

operates much of the time i n  a low power condition, so t ha t  the actual l i f e  should 

be much longer than calculated here. 

The thermal storage resistance J e t  ordinarily 

-12- 



20 40 60 a0 100 120 140 

RESISTIVITY (MICROHM - CM) 
Fig. 2: R e s i s t i v i t y  of  Tbngsten and Tungsten - Rhenium 
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Wire Dimneter 
(Inches) 

O*OOO6 
0 .om 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 
0.012 
0.014 
0.015 
0.018 
0.020 

0.025 
0.030 

0.035 
0.040 
0 . 0 9  

TABLE I1 

Temperature 

(OK) 

9-78 
163 
328 
4-89 
651 
815 
978 

1304 

1630 
1955 
2281 
2442 

2935 
3260 
4070 
4890 
5700 
6510 
8150 

1141 

1468 

Below are listed factors to  multiply the l i fe  at  250O0K, for operation at  other 
temperatures 

*Ufe is here defined as the time t o  evaporate 10 percent by weight. 



I 
I 
I 
I 

- Temperature, OK 
1800 
~900 
2000 

2100 
2200 

2300 
2400 

2500 
2600 

Life Facto+ 
T 
2.32 x loo 
1.45 105 
1.17 x io 
1.23 103 
1.64 x lo2 
25.6 
4-82 
1.00 
0.244 

4 

E. Heat Shielding Desi& 

When the physical design of a reeistance jet thruster has been determined, 

it becomes necessary t o  determine the amount of heat shielding mquired. me 

purpose of the heat shielding i s  t o  reduce the heat loss by radiation from the 

hot engine, and thereby t o  lower the power supply requirement. 

?he radiation fm a hot cylindrical. body (the engine) t o  a cyl indrical  

enclosure (the first layer  of shielding) is given by (Reference 3 ) ,  

where q12 = heat radiated from body 1 t o  body 2 (watts) 
2 A = surface area (cm ) 

E- t o t a l  emissivity (assumed constant a t  0.2) 
0 -  Stefan - Boltwnsnn Constant (5.668 x 10 -12 - watts -1 

T= Surface temperature (OK) 
OB4 

-15 - 



There is also a Small amount of heat conducted between the layers by the supporting 

wires, 'Put tixis is assumed to be negligible compared t o  the heat radiated, for an 

idealized design. 

The heat radiated from the first layer of heat shielding t o  the next layer 

is given by: 

Similarly fram the second layer t o  the th i rd ,  

and so on, until the last (or nth) shield radiates t o  cold space 

4 41 = CA, f T* 

Since the layers of shielding are very close together we can simplify the 

solution by assuming that they all have the same surface area. 

assume that all the emissivities are the same w e  can add equations (9), (lo), (ll), 

If we further 

* - '  (12) to get: 9 

-16- 



1 
u p  
1- 
8 
I 

1 -  

4 = + q 2 3 + q * +  . + %  where nq = 

E =-  1 a n d E =  - + A  (L 1) 2 - €  
€ A €  

Rearranglng gives : 

n q =  6 A  (- 2 - e )  IT T1 ' + (1 - E) T:] 

4 In  pract ice  T~ ,> T: so w e  can w r i t e  

This equation can be plotted for a knovn s ize  resistance jet a t  various temper- 

atures.  

(16) the amount of heat shielding necessary t o  maintain any desired low l eve l  

of heat loss can be found f o r  the particular engine design under consideration. 

In Figure 3 are shown several such curves for tantalum. Using equation 

F. Engine Cool-Down Time 

A m e a s u r e  of the effectiveness of the the& storage resistance jet is the 

rate a t  which energy is transferred from the engine to the propellant. Plerefore 

it is important t o  be able t o  find the mount of time that the engine remains hot 

after the propellant is turned on. 

range of parameters using a PANACEA computer progrcnn: 

This problem has been solved f o r  the following 

-17- 
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1 

Steady-state temperature: lsoO% to 2500OR 

Propenant flow heat capacity: 0.002 to 2.0 watt/% 

-ne body heat capacity: 100 watt - see/% 

I -  

The d e l  that w a s  used for these calculations is shown below. 

Heat Radiated 

t t f t t - 

T out 

Under steady-state conditions w i t h  no flow, the electrical power supplied is 

equal to the rate of heat loss by radiation: 

where 

A = electrical power, watts 

%f f = effective emissivity o f  engine 

6 = Stefan - Boltzmanu constant, 5.4 x 

A - engine surface area, cm watts/(cm2 - OR4) 

2 

0 To = steady -state body temperature, 

-19- 
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Here, an effective value of the endseivlty has been used based on experimental 

data, 80 as to reiate the m a t i o n  heat loas 

than to  the outside heat shield. 

shielding analysis in Section I.E. which shows that the radiated heat I s  directly 

pmportional, fo r  a given number of heat shields, t o  the body temperature. 

the 'ieiiy 'hiperati-+ =&%her 

That t h l s  can be done is shown by the heat 

M n g  a propellant pulse, the energy balance becomes: 

Electrical  + Energy from = Energy absorbed + Radiation 
energy loss  energy thruster by Propellant 

supplied W Y  

which can then be written 

where WT = weight of thruster, lb 
watt -8ec $ = specific heat of thruster, Ib 

0 T = temperature of thruster body, 

t = time, sec 

R 

i g  ='flow ra te  of propellant, lb/sec 
watts-sec = specific heat of propellant, '7 

= exi t  propellant temperature Tout 
T in = inlet propellant temperature 

-20- 
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Because of the high heat transfer to the propellant, it can be taken #at Tout = 

&,- T. 
been referred to the body teasperetm, rather than the heat shield temperature, 

by using an experimentally detexmlned value for an effective emissivity. 

Also it should be observed that the radiation heat loss has always 

ais equstioa; can be urittem in finite difference form and solved for the 

tima increment to decrease the engine temperature to any value lower than the 

Steady S t a t e  

!Ibis equation w a a  solved 011 the capputer for the range of values mentioned before. 

"be curves In figures 4 

applicable to various propellants and flow rates. 

size and specific heat may be determined by observing th8t the time is a linear 

function of thruster heat capacity. 

5 present these resadts, which then are generally 

'Ihe effect  of varying thNSter 
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When a ten ta t ive  design f o r  a resistance je t  thrus te r  has been developed, it 

is usually necessary t o  determine the t rans ien t  character is t ics  of the engine. 

m a l y s i s  has previously been presented i n  Reference 4, but it I s  sunmarized i n  

t h i s  section, and a new section f o r  subsonic i n l e t s  is presented. 

This 

%e basic approach t o  the evaluation of the t ransients  has been t o  determine 

the t ime rate of change of t h rus t e r  chamber pressure. 

re la ted t o  the th rus t  and its t i m e  i n t e g r a l  is impulse. 

!his quantity is l inea r ly  

The model used for analysis is shown i n  Fig. 6. The propellant reservoir 

is considered t o  be of i n f i n i t e  volume and it contains propellant a t  constant 

temperature and pressure. 

%*, such that the chamber conditions are uniform throughout. 

through the sonic throat  

Heat is supplied downstream of the sonic metering o r i f i c e  

The propellant escapes 

* t o  an expansion nozzle. A3 

Ihe assumptions t o  be used in this analysis are  as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

me flow is reversible framthe propellant storage t o  the chamber. 

The propellant velocity i n  the th rus te r  chamber is s m a l l .  

The propellant i s  an ideal gas with constant spec i f ic  heats. 

The i n i t i a l  pressure i n  the thruster chamber i s  zero. 

The propellant flow through the metering o r i f i c e  (A,.*) is choked. 

The f i n a l  expansion is in to  absolute vacuum. 

1- -24 - 
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I 
7. The s w a t i o n  temperature of the propellant i n  the thruster chamber 

is  some multiple ( 3 ) of i t s  temperature i n  the storage state. 

me expansion process through the supersonic nozele is isentropic. 8. 

!be analysis will use the equations for conservation of mass, the perfect 

&as equation of state, and the sonic now mte equation, ts detsmine the transient 

pressure variation . 

A. Start-up Process 

1.2 star, with an expression of eseumptlon 7: 

Tc = 3 To 

where 3 is any number greater than Unity. 

chamber is  : 

The instantaneous weight of &ss In the 

wc = g c 'VC P 
From the equation of state of an ideal gas 

pC p =  gRT, 

and substituting equation (22) into equation (21): 

-26- 
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pc vc wc = - 
RTc 

 hen the time variation of weight i n  the cheunber is 

dUc 'c d 
R Z  - =  

dt 

LJOW the consemtion of mass equation requires that the rate of increase of 

w e l g b t  i n  the chamber is equal to the difference in the inlet and outlet w e i g h t  

f l o w  rates. 

dwC a w1 - u3 - =  at 

Ihe flow rate through e choked nozzle or orifice I s  given by: 

I 
1 
I 
I 
U 
1- 
I- 
I 

(23) 

Substituting equations (20),  (24), and (26) Into (25) and with the assumption 

that both the metering orifice (q*) and the nozzle (%*) are choked, we get: 



I 
I 
U- 
I- 
I 

Separating variables in equation (27) gives the chamber pressure variation 

as : 

%* 
%* 

where d = - 

and the sonic velocity i s  given by: 

cO = I G O  

Integrating equation (29) and using the initial condition of pC = o at  t = 0, 

the pressure variation can be expressed as: 

where the time constant is  defined as: 

-.c- <= vC y: 
0- coA3” 

(33) 

It can be seen that the time constant is therefore a function only of the geometry 

of the engine and the composition and temperature of the propellant, 

pressure i s  given by (CAPO e), as can be seen from Figure 7. 

The steady-state 

-28- 
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B. Shut-Down Process 

I- lhe thermal storage resistance j e t  operates w i t h  the power on a t  all times. 

When the inlet valve is closed the pressure begins t o  decrease u n t i l  it reaches 

the ambient condition. Since the power is on, the expanding gas i n  the chamber 

is ccc%ia~e~a ly  receivlw h a %  frm? the reeiatmce heater, and the shut-down 

process can be approaated by an isothermal expansion process. 

For an isothermal expansion process beginning a t  t = el, the chamber stagnation 

temperature is Te 

shown i n  equation& ) takes the form: 

and remains constant. '&e conservation of mass requirement 
1 

Separating the variables and integrating gives the expression fo r  pressure 

decay : 

A typical  graph of the transient pressure variation f o r  the resistance jet  

thrus te r  i s  shown i n  Figure 7 for a chamber temperature of ten  times the gas 

storage temperature. 

I- , !- -30- 



Fmaa the expressions for chamber pressure already developd, the transient 

1- variations of thrust and l m p u l m  c m  be readily obtained. 'Ihe equation for thrust 

resulting from ieentropic flow Wuah a notfie is given by: 1 
R F = P c 6  %* k l m +  Ae (Pe - Pa) (36 i 

~rorn assumption ( 6 ) ,  Pa = 0. By taklng a typical value for area ratio (Ae/V), 
the corresponding pressure ratio can be obtained froa the standard isentropic flow 

I 
ta-8. 

!be noPdimeasional instantaneous thnret during the transient state can be 

expressed by: 

The right-hand side of t h i s  equation i e  then constant for a particular propellant 

epecies and a specified area ratio (Ae/%*). 

that: 

'Ibis constant can be defined as Ki so 

F = Ki Pc%* 

Substituting fraPr equation (32) gives the thrust Vsriation during the start-up 

process : 



1- 
1- 
R 

which shows that the Lhrust is Gixctly proportional to the chamber pressure. The 

same is true for the pressure decay processes, where the thrust is given by: 

Since the impulse is simply the integration of thrust over a specified time 

period, the calculation of impulse can now be accomplished. 

up process the impulse is given by: 

Thus, for the start- 

where 

% =  Ki"povc co 1 2  
For isothermal expansion, the impulse is given by: 

(42 1 

(43 1 
L * J 

A graph of these expressions for impulse is shown in ;Fig. 8. Note that the con- 

tribution to the impulse froan the expansion of residual gas in the shut-down is re- 

latively s m a l l  fo r  both kinds of expansion processes. 

D. App lication of the Transient Analysis 

One of the more important characteristics of a resistance jet for the controls 

engineer is the time constant. 

constant for the resistance jet has the form: 

?he analytical treatment has established that the time 
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pig. 8:  Delivered Impulse for Resistance Jet Cycle 
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It is ins t ruc t ive  t o  examine the effect  of the important variables on 7.  Be 

chamber volume, Vc, should be Bmsu i f  a snort t i m e  constant is desired. 

'&e value of 6 is dependent 

Volumes as 
I- 
I low as 0.1 cm 3 are  a t ta inable  in resistance J e t  deeims. 

on the propellant and var ies  from 0.58 f o r  k = 1.4 t o  0.54 for  k = ~ 6 7 .  

I 
Increase of the nozzle throat area, %* w i l l  decrease x. However, this approach 

w i l l  tend t o  increase chamber vol& and a l so  t o  increase the area from which heat 

is radiated. 

increasing %* causes a decrease i n  the steady-state value of chamber pressure, Pc. 

This i n  tu rn  results i n  increased fluid dynamic losses  i n  the exhaust nozzle with 

This latter e f fec t  i s  detrimental t o  thruster efficiency. F h t h e r ,  

I 
U 
I 

concurrent losses  i n  performance. 

I 
The stagnation sonic velocity, Co =-\/kgRTo, should be large f o r  'Z t o  be small. 

The effect of T 

power required t o  heat the gas t o  Tc depends on the temperature interval  (T, - To). 

The choice of propellant w i l l  establish the value of the specif ic  heat ra t io ,  k, which 

in any event does not strongly influence the value of Co. 

of course vanishes, although from ~ p c t i c a l  2oint of view the  
0 

I 
I 

The major effect  on the t i m e  constant f o r  a par t icu lar  engine is t o  be found 

i n  the specif ic  gas constant R, which is inversely proportional t o  the propellant 

molecular weight. 

I 
The t i m e  constant is therefore d i r ec t ly  proportional t o  the square 

root of propellant molecular weight. 8 
Representative values of the several terms i n  the expression for T are: 
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3 of order 1 U U  
vC 

6 of order o m 5  

of order 
cO 

of order 1/3 
2 ois order 001 em %* 

-4 These lead t o  a value of the time constant 7= 7 x 10 seconds. 

The t i m e  constant f o r  a cold gas system, typical ly  w i t h  nitrogen propellant 

(mol. u t .  = 28), would be l a rge r  by the factor7/Tc/To, as well as by the fac tor  

qw, f o r  a net  order of magnitude increase t o  approximately 7 x seconds. 

Therefore, a resistance jet  system will a t t a i n  steady-state about ten  times as 

fast as a cold gas system. 

We can ROW proceed to a discussion of the several rate equations which show the 

t rans ien t  behavior. 

consideration. 

comments on the fonner w i l l  be appllcable t o  the l a t t e r .  

that  t h i s  re la t ion  I s  s i@ficant  i n  considering methods f o r  experimental ver i f icat ion.  

'ihrust measurement a t  the low t h rus t  levels t ha t  are required for a t t i t ude  control 

missions, is difficult. 

even greater magnitude. 

reliable measurement of low pressures and associated transients.  

I n  what follows, chamber pressure w i l l  be the variable under 

Because of the l i n e a r  re la t ion between chamber pressure and thrust ,  

It should be pointed out 

The measurement of t h rus t  transients represents a problem of 

On the other hand, there  are available Instrumeats f o r  the 

In  general terms the pressure transient are expressed as: 

pc - = constant + exponential function of time. * 
-35- 
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The constant represents the steady-state value of the dimensionless chamber pres- 

sure and the exponential represents the r a t e  a t  which the steady s t a t e  i s  achieved. - 
For s tar t -up the constant has the value l T c / T o  and it i s  zero f o r  shut-down. %e 

- 
exponential has the form e t/Zboth for s tar t -up and f o r  shut-down. 

Thre  are a a-uber of interest ing resuits t ne t  can be obtained from examination 

of Fig. 7 and a consideration of the physical processes. 

i s  proportional t o  the impulse delivered during this time. 

that  could be delivered is the rectangular area represented by the product of the 

steady-state pressure and the time. !the r a t i o  of delivered t o  maximum impulse is 

0.8 f o r  t h i s  graph, Further, because of the shape of the shut-down process curve 

the impulse delivered during the shut down procebs following propellant valve 

closure i s  0.2 times the maximum impulse t h a t  could be delivered during t h i s  same 

time period. 

achieved i s  therefore the product of the steady-state t h rus t  (which is  proportional 

t o  chamber pressure) and the propellant valve on-time. 

achieved; t ha t  is, i f  the valve i s  closed before f ive  t i m e  constants have elapsed, 

the t o t a l  impulse delivered i s  again the  product of the steady-state th rus t  and 

the propellant valve on-time. 

The area under the curve 

The maximum impulse 

The t o t a l  impulse delivered over a cycle i n  which steady s t a t e  i s  

If steady-state is not 

llzis may be shown as  follows: 

The t o t a l  impulse f o r  a cycle i s  given by: 

-36- 

I- 



where C, = K , . d  P,A,* 
i “ J  & 

= K . A  * pO% (1 - e - QliT) 
1 3  C2 = K A *  I?* 

i 3  1 

This integrates to:  

= t o t a l  = Kid Po 

- - Fo0 = K i d  Po 
but Fsteaciy-state 

so Itotal  = F- . el 

Consider now t h a t  a thrus te r  is required t o  function i n  undisturbed l i m i t  

cycle operation as well as i n  maneuver and acquisition. 

w i l l  es tab l i sh  the minimum th rus t  level. 

minimum cycle t i m e  then the minimum impulse b i t  t h a t  can be delivered w i l l  be a 

function of the time constant. 

during the minimum valve cycle t i m e  tV, then the minimum impulse b i t  t ha t  can be 

The maneuver requirement 

If the propellant valve has a fixed 

Thus, i f  Fe is  the rnnximum thrus t  developed 
1 

P 

where Fo0 = . -t ‘t: 1-e v tV’ delivered i s  ImN = F, . 

In  undisturbed l i m i t  cycle operation it is  desirable t o  keep IMIN 

This r e su l t s  i n  increased time within the deadband and a as possible. 

reduction i n  t h e  number of cycles and i n  the propellant consumption. 

as small 

commensurate 
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To achieve a small value of minimum impulse b i t ,  it i s  necessary t o  have a 

fast-act ing valve and not too high a value of steady-state thrust .  

control engineer‘s viewpoint, a small time constant i s  desired. 

a short  t i m e  constant is that it means the s y s t e m  i s  fast-acting, t h a t  i s  it comes 

t o  a high th rus t  l eve l  rapidly. 

md keep the vehicle attitude wfthfn prescribed limits f o r  a high percentage of tf;e 

mission t i m e  with less propellant expended. 

k - o m  the 

The advantage of 

Therefore, it is able t o  correct errors quickly 

I n  addition t o  the above effect, there i s  an e f fec t  of the t i m e  constant on 

the boundary layer losses  of the engine. 

steady-state, the thickness of the boundary layer  decreases and therefore the 

thrust increases faster than the pressure. 

i s  a graph of th rus t  as a f’unction of chamber pressure f o r  a typical  engine design, 

obtained by using the boundary layer  computer program. 

pressure increases with t i m e ,  the thrust  w i l l  be less than predicted by equation 

(39) because of the boundary layer  losses. ?his ef fec t  can be used to  advantage 

i n  obtaining a smaller value of minimum impulse b i t  by increasing the value of the 

t i m e  constant. 

b i t ,  (Foe . tV) ,  i s  too large f o r  a given application, it may be lowered by increasing 

the t i m e  constant (such as by increasing the chamber volume). 

during a t rans ien t  pulse, the engine w i l l  exert  less thrust because it spends more 

t i m e  i n  a lob?zr thrust  condition. 

As the chamber pressure increases towards 

This ef fec t  is shown by Fyg. 9 which 

Therefore, as <ne chamber 

In  other words, i f  the calculated ideal  value of the minimum impulse 

Thls w i l l  mean tha t ,  

In summary, the design goals fo r  a resistance je t  th rus te r  are a s m a l l  time 

constant, a short  valve t i m e ,  and as high a level of steady-state th rus t  as i s  

cormnensurate with a desired minimum impulse b i t .  If necessary, the t i m e  constant 
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1 
I ’ 1. can be increased t o  lower the actual value of the minimum impulse b i t .  

be mentioned that it is often d i f f i cu l t  t o  guess the results of changes i n  thrus te r  

It should I 
I 

I* 
I 
i 
I 
I 
I 
I 
I 
I 
I 

I 
I 
1- 
1- 
I 

m 

design or propellant; and the recommended procedure i s  t o  carry out the actual 

calculations,  as given i n  th i s  report, t o  f ind the e f fec ts  of any design mdif icat ions.  

If the inlet  o r i f i ce  of a resistance je t  i s  not choked, then the transient 

analysis must be modified. Equation (25) remains the same: 

e 
- =  

3 dWc w1 - w 
d t  

but now 

# 

(47 1 

where C1 is an or i f i ce  coefficient (usually about 0.6). 

flow rate expressions i n t o  equation (46) and a l s o  using the following: 

Then by subst i tut ing the 



wc = P v /RT, 
c c  d 

we have the following: I. 
k+l - dwC = C I A I F  - 

-K dt 

Rearranging gives: 

where 

?herefore: 

because 

with an ermr of about five percent for  Pc/Po = 0 . 5  and twenty percent for Pc/Po 

= 0.86. 
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and therefore, the equat$on becames 

I 
I 
la 
I- 
I 
I 
1 
I 
I 
I 

Then : 

?he corrected time constant therefore becomes: 

I 
I 
I 

where KO can be evaluated f'm the i n i t i a l  condition. 

.( 1+ 
where C1 is the inlet orifice coefficient. 

I- 
I* 
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IV. EFFECTS OF TERUSTER ON TBE VFEtcLF, 

A. Angular Velocity Change 

A series of curves has been calculated for use i n  determining the angular 

velocity cnange imparted to a satellite by a reo is twze  j e t  thrusteri 

l a t ions  were made on a family of vehicles each weighing 2000 lbs. with moments of 

inertia varying from 100 slug-ft2 t o  1000 slug-f t  . 

3 e s e  cslcu- 

2 

The derivation of the equation is as follows: 

iJork done on s a t e l l i t e  by Lhrustcr = (momcnL)x(an~lar displaccment i r 7  ra2ius) 

= (F x R )  x (2f7N) 

where F = th rus t  of resistance jet 

R = radius i n  ft. 

N = number of revolutions 

By conservation of energy, work done = increase i n  K.E. of rotat ion 

1 2 2 (F x R) x ( W N )  = (g) I -Go ) 

whcreu, = i n i t i a l  angular velocity 

hll = f i n a l  angular velocity 
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Eht 2 V E  =(a) +. whereUAv = average velocity during pulse and t = time of pulse. -AV' 

Using this equation01 was found under the following conditions: 

G) = o  

F = .01 to -05 lb 
i) 

R = 2.5 ft. 
2 I = loo t o  lo00 slug ft 

t = 1 to 10 sec. 

The curves for these conditions are shown in Figs. 10 t o  13. 

This analysis can therefore be used to find the total change of angular 

velocity available for a particular design of thruster operating i n  conjunction 

with a given vehicle. 
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?his section contains the results of an investigation of the optimum specific 

impulse of thermal storage resistance jets f o r  s t a t ion  keeping and a t t i t ude  control 

missions. 

upon the major mission parameters including mission character is t ic  velocity,  vehicle 

gross weight, and number of thrusters required per vehicle. 

Tne analysis i l l u s t r a t e s  the dependence of the optimum specif ic  impulse 

I- 

B. 

The previous section of this report has given a design procedure for  a 

resistance jet  attitude control system. 

l e v e l  and then choose propellant temperature and preplsure f rom prac t ica l  

considerations. Then, based on these parameters, the thenudynamic design was 

optimized by select ing the proper size and shape of the exhaust nozzle. 

it should be noted that no attempt was made t o  optimize the overal l  resistance 

jet  system. 

The procedure was t o  assume a thrust 

However, 

A recent analysis has been made t o  detelmine the optimum specif ic  impulse for 

a resistance jet  system based on the overal l  vehicle weight penalty (Reference 5 ) .  

The use of too high a specif ic  impulse w i l l  result in extremely high power 

requirements and a correspondingly high investment i n  power supply weight. 

versely, too low a specif ic  impulse w i l l  result i n  excessively high propellant 

requirements. "he optimum specif ic  impulse can be obtained by minimizing the sum 

of the propellant, propellant tankage, and power supply weight requirements for a 

specified l eve l  of mission propulsion requirements. 

Con- 

I- 
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The vehicle weight f ract ion chargeable t o  the s t a t ion  keeping and a t t i t ude  

control propulsion system will be assumed t o  include the  system power supply, 

the propellant required by t'ae mission, and the propellant storage tank weight: 

(53) 

The system power requirements will be dependent upon the level of steady-state 

therma,l radiation losses  which w i l l  very with the  fourth power of the engine 

operating temperature : 

4 P = 13% T 

'lke consLant K1 i o  a function of the engine design and the effectiveness of 

L;ICI' ~1 insu la t ion  obtained. 12 value of '(1 = 6.25(10)'13 wattsPR was assumed, 

:.6)rresponding to a loss of 10 watts per th rus te r  a t  an operating temperature oL' 

20O0H. Equation (54) should be adequate f o r  the re la t ive ly  small vehicles and 

4 

low characteristic velocity missions investigated i n  t h i s  study. For somewhat 

higher values, it may become necessary t o  add a tern to r e f l e c t  the jet power 

expended during the many propulsion pulses. 

For a given temperature and power level, the specif ic  impulse obtainable from 

a particular propellant can be represented empirically by an equation of the fonfi: 



T = A ( l + B I  2 + C I  4, 
SP sp 

The propellant weight f rac t ion  can be expressed in terms of the t o t a l  mission 

charac te r i s t ic  velocity and the engine spec i f ic  impulse: 

wpdw0 = 1 - wl/w0 = 1 - e - G Q h  Isp 

( 5 5  1 

Equations (54), (55), and (56) can be substi tuted i n t o  equation (53), the result 

d i f fe ren t ia ted  with respect t o  specific impulse, and equated t o  zero in order to 

minimize the t o t a l  s y s t e m  weight. The resu l t ing  equation can then be written i n  

the form: 

!be right-hand s ide  of equation (57) can be evaluated mer the spec i f ic  impulse 

range of i n t e r e s t  f o r  any propellant and represented by an equation of the form: 

= D + E & X + F a n 2 X  (58) ISP 

The mass r a t i o  can be s o t  equal to 1.0 without introducing any signif icant  e r r o r  

i n  the calculated value of specific impulse from equation (58). 

of equation (57) can therefore be simplified to:  

'Ihe left-hand s ide 



Ihe resul t ing equations (53)  throua (56), (58), and (59) can be used t o  

generate the desired specif ic  impulse requirement and the other system parameters 

as a function of vehicle gross weight, mission charac te r i s t ic  velocity, number of 

engines per thruster, powerplant specific weight, and propellant tankage factor .  

Propellant tankage factor,  wT = 

Power supply weight, w = 0.3 lb/watt 

Ebpirical  coefficients,  A = 138.333 

B = 5.392 x 

c = o  

D = 276.694 

E = 3.7415 

F = 3.8639 

Ihese empirical fac tors  can then be used t o  f ind curves of optimum specif ic  impulse 

as  a flmction of vehicle gross weight and mission charac te r i s t ic  velocity. 

curves of t o t a l  impulse per thrus te r  can be generated as a function of vehicle 

gross weight and characteristic velocity, where the t o t a l  impulse is given by: 

Also 

IT = ' 0  'sp (wpp/wo 1 

These calculations can 

(60 1 

be carried out t o  demonstrate the optimum application 

f o r  the example engine designed previously i n  t h i s  report. The right-hand s ide  of 
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equation (57) can be evaluated so that ,  for 1- = 596 sec, 
m i )  

w1 Wo AV 
Since wT = 1.0 for hydrogen end w 2 1.0, we have - = 826,302 

0 N 

Therefore, for a lo00 lb vehicle with a charac te r i s t ic  velocity of 826 ft./sec. fo r  

each thrus te r ,  the  hydrogen resistance jet  engine with a specif ic  impulse of 596 

see. imposes the smallest overa l l  weight penalty. 

defined the range of missions (i.e., product of gross weight and charac te r i s t ic  

veloci ty)  for which a par t icu lar  engine is optimum. 

!&is analysis has therefore 

An a l te rna t ive  approach t o  the problem, and one which should probably be used 

f o r  f l i g h t  hardware, is first t o  def ine  t he  mission and then design the engine 

armad the  optimum specif ic  impulse. 

the  var ia t ion of effective specif ic  impulse is known as a function of temperature, 

by employing the methods given i n  t h i s  analysis. 

be designed fo r  any part icular  vehicle application. 

This approach can be readi ly  empioyed, when 

Therefore an optimum system can 
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I '  
V. SUMMARY AlJD mcLus1ms 

'Ihis report has presented analytical methods of establishing t h e  thennodynamic 

and physical design of a resistance j e t  thruster  fo r  a t t i tude  control of a space 

vehicle. 

thruster  and guideiines for detemtmt3Czn of optimum performance levels. 

these analyses have alreedy been used for  actual thruster design and the i r  accuracy 

has been experlmentelly validated. 

I- 

I 
I 

I It also includes methods for analyzing the transient performance of the 

&st of 

I Same interesting conclusions can be drawn froan the results of these aaalyses: 

1) me optimum specific imgulse level f o r  a par t icular  thruster appxcation 

may be somewhat  lower than expected, because a high specific impulse may cause 

excessive power requirements. 

I 
I 2) The flow path necessary for maximum heat t ransfer  t o  the propellant will 

probably be much shorter than i s  required t o  allow ample space for the heater wire. 

3)  A large number of layers of heat shielding will probably be required t o  

decrease the radiatian heat loss t o  8 suff ic ient ly  low level. 

4) Design goals for god response 7;eneralJ.y include a small time constant, I 
I short valve time, and as  high a thrust l eve l  as  is compatible with a small minimum 

impulse b i t .  



5 )  It takes s e v e d  minutes for an engine with propeuant flowing t o  cool 

down enough to experience a loqb l O S 8  i n  thrust, which m~ans that the thenual 

storage type of' nsisfmce jet thruster i s  well-suited to  most applications of 

attitude control and station b e p i n g .  

6 )  The lifetlme of a resistance jet engine i s  nomaliy determined by :he 

lifetime of the heater wire, which is typically many times longer than the duration 

of the mission. 

I 
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